Online Multitask Relative Similarity Learning

نویسندگان

  • Shuji Hao
  • Peilin Zhao
  • Yong Liu
  • Steven C. H. Hoi
  • Chunyan Miao
چکیده

Relative similarity learning (RSL) aims to learn similarity functions from data with relative constraints. Most previous algorithms developed for RSL are batch-based learning approaches which suffer from poor scalability when dealing with realworld data arriving sequentially. These methods are often designed to learn a single similarity function for a specific task. Therefore, they may be sub-optimal to solve multiple task learning problems. To overcome these limitations, we propose a scalable RSL framework named OMTRSL (Online Multi-Task Relative Similarity Learning). Specifically, we first develop a simple yet effective online learning algorithm for multi-task relative similarity learning. Then, we also propose an active learning algorithm to save the labeling cost. The proposed algorithms not only enjoy theoretical guarantee, but also show high efficacy and efficiency in extensive experiments on real-world datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Multitask Learning for Machine Translation Quality Estimation

We present a method for predicting machine translation output quality geared to the needs of computer-assisted translation. These include the capability to: i) continuously learn and self-adapt to a stream of data coming from multiple translation jobs, ii) react to data diversity by exploiting human feedback, and iii) leverage data similarity by learning and transferring knowledge across domain...

متن کامل

Active Learning from Peers

This paper addresses the challenge of learning from peers in an online multitask setting. Instead of always requesting a label from a human oracle, the proposed method first determines if the learner for each task can acquire that label with sufficient confidence from its peers either as a task-similarity weighted sum, or from the single most similar task. If so, it saves the oracle query for l...

متن کامل

Active Online Multitask Learning

In this paper, we propose an online multitask learning framework where the weight vectors are updated in an adaptive fashion based on inter-task relatedness. Our work is in contrast with the earlier work on online multitask learning (Cavallanti et al., 2008) where the authors use a fixed interaction matrix of tasks to derive (fixed) update rules for all the tasks. In this work, we propose to up...

متن کامل

Multitask Multiple Kernel Learning (MT-MKL)

The lack of sufficient training data is the limiting factor for many Machine Learning applications in Computational Biology. If data is available for several different but related problem domains, Multitask Learning algorithms can be used to learn a model based on all available information. However, combining information from several tasks requires careful consideration of the degree of similar...

متن کامل

Multitask Learning Using Regularized Multiple Kernel Learning

Empirical success of kernel-based learning algorithms is very much dependent on the kernel function used. Instead of using a single fixed kernel function, multiple kernel learning (MKL) algorithms learn a combination of different kernel functions in order to obtain a similarity measure that better matches the underlying problem. We study multitask learning (MTL) problems and formulate a novel M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017